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Ground and excited electronic states of the allyl cation and anion, the butadiene radical
cation and anion, and of the pentadienyl cation and anion have been calculated by a semiempi-
rical valence bond method. The results of such calculations are in essential agreement with the
known properties of such systems. A comparison of the results of the valence bond treatment
with those expected on the basis of the qualitative resonance theory yields serious discrepan-
cies which show up the limitations inherent in the latter formalism.

Der Grundzustand und die elektronisch angeregten Zusténde der folgenden Systeme wur-
den mittels einer semiempirischen Valence-Bond-Methode berechnet: Allyl Kation und Anion,
Butadien Radikal Kation und Anion, Pentadienyl Kation und Anjon. Die Ergebnisse stchen
in verniinftiger Ubereinstimmung mit den bekannten experimentellen Daten. Ein Vergleich
der Resultate, die mittels der Valence-Bond-Methode erhalten werden, mit jenen, die man
aufgrund der qualitativen Resonanz-Theorie erwarten wiirde, ergibt wesentliche Unterschiede,
die auf die Grenzen hinweisen, die dem letztgenannten Formalismus eigen sind.

L’état fondamental et les états électroniques excités du cation et de 'anion allyl, du cation
radical et de 'anion radical du butadiéne et du cation et de 'anion pentadiényl ont été cal-
culés par la méthode semiempirique valence bond. Les résultats de ces caleuls correspondent
raisonnablement aux données expérimentales connues pour ces systémes. Une comparaison des
résultats théoriques avec les prédictions de la théorie de résonance donne des différences qui
démontrent les limites de ce formalisme qualitatif.

Introduction

Resonance theory, as traditionally used by organic chemists, was originally
intended to be a qualitative extrapolation of the valence bond method. It was
hoped that certain essential concepts of quantum mechanics could be incorporated
in this way into the classical structure theory. To achieve this, a certain number
of drastic simplifications had implicitly been made, e. g. 1. that the number of
structures to be considered can be reduced to those showing no long bond (Kekulé
type structures), 2. that the energy of the most stable of the hybrid states is pro-
portional to the number of such structures, 3. that polar structures have the same
weight, irrespective of the amount of charge separation, 4. that the coupling be-
tween any pair of structures of the same kind is a constant etc. None of these
assumptions and simplifications can be validated on the basis of the VB method.

Recent investigations have shown [10, 13, 14, 16, 17, 29] that those rules of
resonance theory that apply to alternant m-electron systems and that yield valid
predictions are grounded in molecular orbital theory in its Hiickel approximation.
The writing of resonance structures turng out to be a convenient graphical short-
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hand, (valid only for alternant systems not containing rings of 4n carbon atoms)
which maps the topology of such systems [16, 29]. As a corrolary, one predicts
that resonance theory should fail in the case of non-alternant systems, systems
containing hetero-atoms or systems that are heavily substituted. This is indeed the
case.

These failures of resonance theory have sometimes been interpreted to mean
that the VB method itself fails when applied so such systems. Even though the
VB method has been the object of several improvements and extensions in the
near past (e. g. inclusion of ionic structures [3, 32, 33], calculation of matrix
elements from molecular integrals [1], reformulation in terms of orthogonal atomic
orbitals [22], extension to triplet states [£1], population analysis of VB cigenfunc-
tions [26]) the pertinent calculations are still missing. In the present series of papers
we wish to apply the VB method to systems of chemical interest (ions, radical
ions, transition states and intermediates) that involve orbital degeneracy.

In the following discussion we are using the term “structure” in two different
ways. In the framework of resonance theory it has the usual meaning that the
organic chemist intuitively associates with it. In valence bond theory “siructure’”
stands for a wave function. It is in this sense that we shall refer to the contribution
of a structure to a particular state of the system, or to the energy of a structure.

Discussion of the Results
The allyl cation CzH,* (1), the allyl radical C;H," (2) and the allyl anion
C;H,~ (3) are represented in resonance theory by the superposition with equal
weight of the following pairs of structures:

e/\«»%/\@ /\<—>A e/ ./ \e
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The contribution of structures 1nvolv1ng a long bond between the terminal centers,

namely o . .
NN O
(1///) (2///) (3///)

is usually neglected, and indeed, for the radical (2), the wave function associated
with (2'") can be shown to be a linear combination of the wave functions corres-
ponding to (2') and (2”'). These two structures are therefore sufficient for the VB
description of the allyl radical. However for (1) and {3) the wave functions corres-
ponding to structures (1”') and (3"’) are not linear combinations of those belonging
to the other two structures and have therefore to be included in the canonical set,

If we follow the traditional resonance argument, then we would predict from
(1)<—(1") and (3')+~— (3"') that the charge distribution in (1) and (3) is as follows:

0
0.500 "\ 0.500 —0.500 /N —0.500
Excess positive chargein (1) Excessnegative chargein (3)
according to resonance according to resonance
theory theory

The same prediction is obtained according to the simple Hiickel treatment of
these two odd alternant systems.
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If the VB treatment is applied to the set of functions associated with the
structures (1), (1'"), (1") and (3'), (8"), (3""), then a quite different charge distri-
bution is calculated if all three centers are assumed to have the same electronega-
tivity.

0.266 —0.136
0.367./ "\ 0.367 — 0432,/ \ —0.432
Excess positive chargein (1) Excess negative chargein (3)
according to VB theory according to VB theory

It is seen that the contribution of (1'") and (3"") is far from negligible. As a matter
of fact, it is of the same magnitude in (1) than the contribution of (1') and (1”).
The contribution of the long bond structure in (3) is somewhat smaller. In (1) as
well as in (3) inclusion of the symmetrical structure keeps the electrons further
apart. In (3) this effect leads to a somewhat more uneven charge distribution than in
(1) with a pronounced accumulation of negative charge on the terminal carbon atoms.

MO-calculations by a complete configuration interaction treatment [2] (in-
cluding multiply excited configurations) of the charge distribution in the allyl
cation (1) yield

0.077

0.462 7\ 0.462

Excess positive charge in (1) according to a MO-CI treatment

with still rather pronounced charge localisation on the terminal centers.
In the nmr spectra of alkyl substituted allyl cations of the following type [7]

Me Me
Me | | e Me Me
a‘\@’Jc a“__e}a ic
Me \\1{ \Me Me/\'/\M
Me Me

the proton signals of the methyl groups occur at 2.7 ppm (for positions a and c)
and at 2.0 ppm (for position b) relative to TMS. Assuming that the proton signal
for a methyl group attached to a neutral sp? center is at 1.6 to 1.7 ppm relative
to TMS [2] and that the shift to lower field of the methyl proton signals in the
substituted allyl cations is due only to the accumulation of positive charge in the
«-position [2, 35, 37] then the following mean distribution is obtained from the

experimental data:
0.13

043/ \0.43

Experimental charge distribution from nmsr data

This distribution is that of an allyl cation in which the central carbon atom carries
only one alkyl group while the terminal carbon atoms are each connected to two
such groups and have, therefore, a lower electron affinity, which favors the accu-
mulation of positive charge on them. If this effect is taken care of in our VB treat-
ment by lowering the energy of structures (1) and (1") relative to the energy of
structure (1'”) by an amount ke, then the following corrected charge distribution
is obtained (with & = 1 for the particular example).
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0.169

0.416 "\ 0.416

Excess positive charge in (1) according to VB theory with a correction for the reduced electron
affinity of the terminalcenters

This is in good agreement with observation. From this it is probably safe to
conclude that the charge localization in an unsubstituted allyl cation is smaller
than that calculated above from the nmr data, but probably not as small as indicat-
ed by our calculation without the correction for the effect of alkyl substituents
on the terminal centers.

Tt might be mentioned in passing, that in the allyl radical (2), where the long
bond structure is not included in the VB calculation and where the resonance
approach might be thought to be correct, the spin densities due to the unpaired
electron are not

0
TN

“spin densities” according to resonance theory

This naive interpretation of (2') < (2”') is quite misleading and the correct spin
distribution obtained according to VB theory from this set is calculated as

- 1/3
(VAN

Spin densities according to VB theory

with a negative spin density on the central carbon atom.

In the case of the pentadienyl-cation C;H,*, pentadienyl-radical C;H,* and
the pentadienyl-anion C,;H,~ similar relationships are found. Structures which
are usually disregarded in the traditional resonance discussion contribute consi-
derably in a VB treatment of these systems. Their slightly higher energy is out-
weighed by the size of the crossterms which link them to the more stable structures
(see maftrices given in appendix 2).

An instructive example is provided by systems of the following type:

X H X H HHHH
\

(5) (6)

(4) and (5) are usually assumed to be models for the transition states or the inter-
mediates in electrophilic and nucleophilic substitution reactions. (4), with X = H,
is the benzenium cation, alkylated derivatives of which are known [2, 18, 20, 27],
and (6) is the conjugate acid of cycloheptatriene [2, 5]. Resonance theory and also
Hiickel MO theory would predict the following charge distribution in the ground
state, the | sign referring to the cation, the — sign to the anion:

T Ys s
0 \ / 0
s
Excess charge according to resonance theory or Hiickel MO theory
16*
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If we assume for the moment that the CHX grouping in (4) and (5) and the
CH,CH, link in (6) exert no inductive or other influence on the two terminal AOs,
and if we make use of the complete canonical set of structures, we get the following
charge distribution in the ground state of our z-electron system:

0.126 0.126 —0.220 —0.220
0.171 t\/l 0.171 —0.110 |\/l —0.110
0.407 —0.340
Excess positive charge in Excess negative charge in
(4) or (6) according to VB (5) according to VB theory
theory

We note first of all that in (4) and (6) more positive charge is found in meta than
in ortho positions relative to the saturated center(s). In other words, structures
like (7) and (8) provide a larger contribution than structures like (9) and (10).

A N
(7) (8) (9) (10)

In (4) with X = H and in (6) we expect as before the electron-releasing effect of the
CH, and CH,CH, groupings to increase the contributions of structures (9) and (10)
relative to those of (7) and (8). If we include this effect in our VB calculation by
assigning lower energies to structures with an empty terminal AO [such as (9)
and (10)] relative to those where both these AOs are occupied [such as (7) and (8)]
by an amount kx, then we obtain an increase in positive charge in ortho and a
decrease in para positions. The meta position is very little affected. In diagrams
(11) to (16) we compare the results of our VB calculations (with and without
inclusion of a perturbation) with the results of MO treatments [2] and with the
experimental charge distribution obtained from the nmr spectra of cation (6) and.
of the 2, 4, 6-trimethyl derivative of (4) [2], that is the conjugate acid of mesity-
lene. It is seen that the VB treatment yields a prediction for the charge distribu-
tion that, in view of the crudeness of the assumptions concerning the relative size
of the parameters «, &’ and y (see appendix 2), is as good as can be expected.
Indeed, an MO treatment with complete configuration interaction gives poorer
agreement, and only the method of WEELAND and MANN [36] yields a satisfactory
prediction, based, however, on an ad hoc value of the adjustable parameter w.

0.22 0.22
0.16~0.14K/|0.16—0.14 (11)
0.25— 0.27

Experimental charge distribution from nmr data [2]

0.33 0.33

o s

0.33
Distribution according to simple Hiickel MO theory and according to resonance theory
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0.38 0.38
~0.04 K/I —0.04 (13)
0.33
Distribution according to a SCF MO calculation [2]
0.24 ,0.24
0.13 |\/‘ 0.13 (14)
0.26
Distribution calculated according to the method of WHELAND and Maww, with o = 2.8 [2]
0.13 0.13
0.17 ‘\\/I 0.17 ’ (15)
0.40

Distribution calculated by the VB method, without inclusion of a perturbation for the termi-
nal AQs. (See Tab. 5 of appendix 2, where the canonical set, the matrix, and the numerical
results are listed)

0.21 | 0.21

0.14 ‘\/ 0.14 (16)

0.30

Distribution according to the VB method, including a perturbation for the terminal AOs.
(Change in the @-values for structures with a positive charge on these AQs by one unit of «)

The acid-base equilibria between methyl-substituted benzenes and their
conjugate acids, that is, the correspondingly substituted cations (4), depend
characteristically on the number and positions of the methyl groups [9, 12, 18, 20].
This dependence has previously been interpreted on the basis of the charge distri-
bution given by the Hiickel approximation, assuming that the methyl groups
exert a purely inductive effect [9]. Within the limits of error of the experimental
data [20], however, the distribution predicted in this paper gives just as good
agreement when used as a basis for such a perturbation calculation. Dissociation
constants are, therefore, a poor test for the charge distribution in such cations,
especially in view of the difficulties in choosing a reasonable model for the effect
of the alkyl groups [9, 12].

The results listed in Tab. 1 and 5 of appendix 2 show that the two first elec-
tronically excited states of the allyl cation have predicted energies of —1.851
and —3.202 «, and the first three of the pentadienyl cation of —1.503 &, —2.320 «,
and —2.769 «, relative to the ground states of these systems. Assuming & =
— 18000 cm~1, the values listed under “VB” in Tab. A are obtained for the posi-
tion and direction of polarization of the first bands in the electronic spectrum of
the cation. These predictions are compared with the experimental results obtained
for the 1,3-dimethyleyclopentenyl cation, the 2,4-dimethyl-pentenyl cation and
the 1,3,5,5-tetramethylcyclohexenyl cation [6] and with those for the 2,4,6-
trimethyl derivative of the cation (4) (X = H) and for (6) [2]. The values in the
columns “CCI” are results of those MO caleulations including complete configura-
tion interaction, in the columns “LCI” of MO calculations with limited configu-
ration interaction.
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There is a serious diserepancy between predictions obtained from MO theory
and from our VB treatment for the sign and magnitude of the shifts in band posi-
tion, produced by substituents that act only through an inductive effect. Unfor-
tunately, the experimental results [2, 4, 11, 27] do not permit a decisive test,

Ty
N4
i e
Table A
Theoretical icti
Band Cation Band position l ! coretica predlctlon? .
in em~! [6] Position Polarization

v lcerrer | v | corp

H30/®\CH3 36400
CH, CH,
| @ | 32800 33300 52000 x x
i H,0~ N7 CH,
H,C CH,
$< 31800
H,C " CH,
I | all cations above 45000 | 57600 | 81000 | y |
T y
N
\‘
x
i
Theoretical predictions
s Position Polarization
Band position
Band | Proton complex of in om=" [2] ‘ CCI [2]
: VB |CCI[2]|LCI[19]] VB and
| LCI [19]
I Mesitylene 28300 28200 x
Cycloheptatriene 28400 27000 | 29500 | 26 900 | = x
1T Mesitylene 39000 36700 J y
Cycloheptatriene 36400 41800 | 35100 | 40800 | ¥ o
| | |
II1 Mesitylene 49800 52600 ‘ \ y
\‘ Cycloheptatriene 45400 49800 | 52000 54600 j 4 “ Yy

although MO predictions from simple Hiickel theory seem to agree slightly better
with the limited observations [36] available. However, the considerable changes
in band position that are observed in the spectra of alkyl-substituted allyl cations
as a consequence of alkyl substitution on carbon atoms that do not participate in
the 7-electron system, [6] indicate that other factors, such as changes in solvation
may have to be considered before definite conclusions can be drawn.
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For the anion (5), with X = H, we predict the charge distribution shown below
if the inductive effect of the methylene group is taken into consideration. In this
particular example, it has been assumed that all structures with a negative charge
in positions ortho to the methylene group are destabilized, relative to those strue-
tures which have no such charge, by an amount equal to «.

H H
—0.154 ><|~ 0.154

—0.140 ‘\/' — 0,140
—0.415

Excess negative charge in (5) according to VB theory, including an induetive effect for the
methylene group

The most noteworthy feature of this result is the pronounced accumulation of
negative charge in the position para to the methylene group. Such an accumula-
tion, although less pronounced, was predicted even when the inductive effect of
the methylene bridge was neglected. We conclude therefore that even in the
absence of inductive effects [36] and without taking into account changes in bond
lengths, there is a tendency for negative charge to accumulate in the para posi-
tion, because of purely electronie factors. The system (5) (X = H) is assumed to be
an intermediate in the Birch reduction. If (5) is attacked by a strongly electro-
philic reagent, e. g. by a proton, that yields the reaction product in a strongly
exoenergetic reaction step, then the transition state may be assigned a structure
very similar to that of the reactants. [15] It may be well represented by (5) in
association with a loosely bound proton. This leads to the prediction of 1,4 addi-
tion in such reductions, rather than 1,2 addition, in agreement with observation.
Preferred 1,4 addition is also predicted by MO theory, but only if either bond
length alternation, or an inductive effect of the methylene group, or the polariza-
bility of the electron system is taken into account [36].

In view of the restriction imposed by resonance theory on the size of the set
of structures assumed to be representative of a z-electron system, it is of interest
to examine the contribution of the sets (17), (17°), (17") and (18), (18", (18") to
the ground state of the pentadienyl cation [or of (4)] and the pentadienyl anion
[or of (5)].

L | | ]®
N \@/ A4
(17) (17 (177)

°L I | J°
N \e/ A4
(18) (18") (18"

Such a VB treatment will obviously yield charges in the ortho and para positions
only. However, the values in these positions depart from the 1/,:1/,:1/, -distribu-

tion.

0.167 0.167 —0.204 = 0.294

0 0 0! 'o
NS NS

0.667 —0.413
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In Fig. 1 and 2 the results of VB treatments based on ) the two sets above,
b) including long bond structures (17'""), (17"") and (18""), (18""") and ¢) the com-
plete canonical set are shown. Note that structure (17') is more stable than (17)
and (17"), but (18') is less stable than (18) and (18").
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The coefficients of the structures that contribute in the three approximations
to the ground state of the two systems are given in Tab. B.
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Table B
Pentadienyl-cation
A7 A1) Ay (17 ! ﬁwﬂ
Appr. ® %Iwz Q/H% | )% _%Ws Vs
N / © N/ b o/
a 0.408 0.817
b 0.341 0.388 | 0.682
c 0.294 0.100 0318 | 048 0069 | 0.601
Pentadienyl-anion
| (18) (18) (18”) (18"">‘j 18) |
Appr. | e Qg &y, N w l (2} Il | s
N a GVHG/ |
a ’ 0.542 l 0.643
b l 0.469 0.294 0.622°
¢ | 039 0.117 0.238 0.142 | 0.560 | 0.043
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Appendix 1
The VB Treatment of Systems involving Orbital Degeneracy

A. The Basis Functions

The first step is to assign wave functions y; to the members of the set of linearly indepen-
dent structures representing the system under consideration. We assume that for a given sys-
tem

M = number of electrons
N = number of atomic orbitals
n = number of covalent bonds in the structures.

The original Heitler-London-Slater-Pauling treatment [24, 30, 34] applied to cases with
M = N = 2n, that is to neutral systems with an even number of orbitals (including a phantom
orbital [25] for radicals) and included only covalent structures. Inclusion of ionic (polar)
structures introduces degeneracies, since in such structures, one atomic orbital is doubly occu-
pied and another is vacant so that # = N # 2x. In the present paper we consider systems with
M =N -1, the positive sign holds for anions, the negative for cations. Depending on whether
N is even or odd we obtain:

1.a) N =odd M=N-—1 n = M[2 Cation (singlet)
by N =odd M=DN+1 n=(M—2)/2 Anion (singlet)

2.a) N =even M=N—-1 n=(M—1)/2 Radical-cation (doublet)
b) N=even M=N+1 n=(M—3)/2 Radical-anion (doublet)

Since the sign of the charge has no influence on the number of independent structures that
form the basis, only two cases need be considered: 1. Tons (singlet), 2. Radical-ions (doublet).
For both classes Rumer’s theorem [28] applies.

1. Ions (singlet, N = odd). The plus or minus charge (electron hole or electron pair) can
oceupy any one of the IV atomic orbitals of the system. The remaining N — 1 atomic orbitals
can be arranged on a Rumer circle, so that the total number Z; of independent structures is
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v
g N (N—1)1 _ N
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2. Radical Ions (doublet, N = even)}. The plus or minus charge (electron hole or electron
pair) can occupy any one of the N atomic orbitals of the system. A phantom orbital must be
added to the odd number of remaining atomic orbitals before they are arranged on the Rumer
circle. The number Zr of independent structures is

N

With each structure we associate a wave function, which takes one of the following forms,
depending on the charge type of the system:

Zr=N

a) Cations or radical cations. Assuming that the electron hole (positive charge) occupies
atomic orbital ¢, we have:

p =22 Y (—1)ER
R

(M!)*%Z(%)Pp(aba...hz...s)J (3)

This function y corresponds to a structure in which the atomic orbitals @ and b, ¢ and d eto. are
bonded and in which the orbital ¢ has been omitted. Atomic spin orbitals without dashes
above them (b, d,...s) are associated with spin functions «, those with dashes (@, ¢,...) with
spin functions 8. All other symbols have their usual meaning.

b) Anions or radical anions. If the atomic orbital ¢ is doubly occupied we have:

M(ﬁLl) 1@ —
p=2 2 Z(—i)RR{(M!/Z) 2Z(—i)PP(dbé...hiik...s)] (4)

The function yp corresponds again to a structure in which the atomic orbitals @ and b, ¢ and d
etc. are bonded, orbital ¢ being doubly occupied. The index (7} above the summation over all
permutations indicates that this summation has to be carried out over all permutations of the
M electrons over the atomic spin orbitals @, b, ¢. . .s, with the exception of those permutations
which involve 4 and 7 only. However the spin-reversal R for electrons occupying the same
atomic orbital ¢ has to be included.

An alternative way to write a correct y-function for structures of anions or radical anions
is to allow all permutations of electrons, including those between the atomic spin orbitals 7
and 1, but excluding spin reversal between electrons occupying the same atomic orbital.

B. The Calculation of the Matrixz Elements
The calculation of the matrix elements involves a) the definition of the basic integrals and
b) the determination of the coefficients with which each of them is associated in a particular
matrix element.
The integrals have been defined previously [33] and are included here for the sake of com-
pleteness.

L. The Overlap Integral S. Assuming zero overlap between the atomic orbitals involved,
the overlap integral Sr = (g, [ ¥s) between two structures is different from zero only if the
positive or negative charge (electron hole or electron pair) occupies the same atomic orbital
in both v, and .. In this case S, is equal to the coefficient derived from the superposition
pattern according to the rules given below for the Coulomb Integral Q.

IL. The Coulomb Integral Q. If 5# isthe Hamilton operator for the system under considera-
tion, then the Coulomh integral @ is defined as
Q = {abed. . .|| abed. .. )

Such integrals occur in the matrix elements Hy = (. |37 | ys) only if y. and v, contain the
same set of atomic orbitals. There is, therefore, no contribution from @ in matrix elements
between structures carrying charges on different atomic orbitals.
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III, Exchange Integral &, This exchange integral, the only one occuring in the VB treatment
of neutral z-electron systems with exclusively covalent structures is defined as

= (a...ij. .| a...f..)

where the product functions before and after # differ only by the exchange of two atomic orbi-
tals 7 and § adjacent to one another in the real molecule. Otherwise the integral is set equal to
zero.

The integral may be characterized as involving two simultaneous electron jumps between
two atomic orbitals adjacent in the molecule.

IV. Exchange Integral &’. This integral involves two product functions that differ by one or
more atomic orbitals in such a way that the two electrons in the exchange occupy three
different atomic orbitals in the two functions:

o« = (@...7.. |5 |a...jk..) 4 jandj, kadjacent

For example, such integrals occur in the matrix elements between the y-functions correspond-
ing to the pair of structures.

NN and N AN

These integrals involve two simultanheous electron jumps between three different atomic orbi-
tals, each electron jumping from one orbital to an adjacent one.

V. Exchange Integral . In this integral the two product functions differ only by one atomic
orbital. The two atomic orbitals occupied by the same electron in the two product functions
must be adjacent:

Y o= {a..... i Hla.. ... /)

This corresponds to a one electron jump between adjacent atomic orbitals.

All other integrals are assumed to be negligibly small and are set equal to zero in our
calculations. Furthermore, it is assumed that the exchange integralsx,«’ and y are constant for
all systems under discussion.

The coefficients with which the different integrals enter the matrix element H,s are obtai-
ned with the aid of so-called juxtaposition diagrams, which have been described previously
[33]. The steps involved in the calculation of the coefficients can be summarized as follows:

1. The diagram for a particular matrix element between two functions y, and y; is obtained
by writing above and below a line one of the permutations of the electrons and of the spins
among the atomic orbitals. (This will be usually the ground permutation.) Bonded pairs and
unshared pairs are connected by arrows, the head and the tail of the arrow signifying spin «
and f respectively.

For example:

Superposition diagrams for H,, of the pentadienyl cation (c. f. Tab. 5), for H,;, of the allyl
anion (c. f. Tab. 2), and for H,, of the butadiene radical cation (c. f. Tab. 3). (z = phantom
orbital)

y:boe d—e pia—a b—c Ypra—~c d—z
%:b@e yia—>b c—c Yia—~c d—z

2. The electrons of the array below the line are permuted among the spin orbitals in all
possible ways, and for each permutation the type of the corresponding integral is identified.
Let Pz be the order of the permutation that yields a particular integral.

3. We will now reverse the arrows in both arrays until they match for all the orbitals. Let
EBr and By be the number of reversals necessary in the lower and in the upper array respec-
tively.

4. If § is the number of islands in the juxtaposition diagram (after permutation of the spin
orbitals to yield a particular integral) then the coefficient K of the integral is given by

K =21 =% (- 1)Pu+EL+ By for cations and radical cations,
K =2/—"=1(- 1)L+ 2 + 2y for apions and radical anions.

In the case of the radical cations and radical anions, # includes the bond leading towards the
phantom orbital z.
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For our examples given above we obtain:

P, Rv R. §j K Integral
prboe d—e
wz:b&e 0o 0 o0 1 5 Q
1
c. b_d e 1 1 0 1 5 o
1
b_d—c e 1 0 1 1 7 o
b d 1 1 0 1 !
[ ’é‘ o
1
H12=E(Q+30‘)
P, Rv Rt § K Integral
yia—>a b—c
Ygia—>b c—c 60 0 0 21 o!
b—a c—c 1 0 1 2 1 o'
Hy; =24
P, Ry R §j K Integral
Ve o doz 0 0 0 21 )
ygia—~>c d—z
1
a d ¢ =z 1 1 1 1 - o
N S 2
o
Hy =0 — —
w=0 B)

C. The Eigenvalues and Eigenfunctions
The matrix elements calculated according to the rules given yield the secular determinant
|| Hrs— SisB || = 0
the solution of which gives the eigenvalues B and the corresponding linear combinations

Y= Z Cir Yr
r
where the summation includes all structures of the canonical set. The coefficients Csr satisfy
the normalization conditions
/l = ZZCJT OJsSrs .
i 8
Because of the orthogonality of the AOs a, b, ¢, . . ., n, the overlap-Integrals S differ from zero

only if - and y; include the same set of AQs.

The charge density on the atom with the AO k, when the system is in the state ¥, is given
by

CDgy = + Z Z @ CstCru S
t u

where the summation has to be carried out only over those structures ¢ and  that exhibit a
positive (negative) charge on the center k. Spin densities can be calculated in different ways,
the simplest one being that proposed by ScrHUG, BRowN and Karerus [31]:

S.D.ch = Z Z &) OJr CJs Srs .

r s

Here, the summation includes all those structures in which the orbital k is included in the same
island of the juxtaposition diagram as the phantom orbital z. The remaining terms enter the
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summation with either the positive or the negative sign depending on the number of bonds
separating the orbital under consideration from the phantom orbital in the juxtaposition dia-
gram. An odd number of bonds corresponds to a positive, an even number to a negative sign.

Appendix 2
The Tab. 1 to 8 contain the results of our calculations. The following conventions have
been used:

1. In all the product functions given, the sequence of the spin functions is fofafex. ..
beginning with the leftmost AO.

2. As far as possible, the alphabetic sequence of the space orbitals @, b, ¢. .. has been con-
served in the product functions. The phantom orbital z of the radical ions is associated with
spin o and has to be included to the right of the product functions given in the tables.

3. All matrix elements have been calculated under the conventions 1. and 2. of appendix 1.

4. On the basis of preliminary calculations concerning the relative size of the integrals o,
o' and y, the following simplifying approximation has been used:

o =af2,y=q
5. The eigenvalues are given in terms of the reduced parameter xs

EJ:Q+OCxJ .

Table 1. Allyl cation, (H,C:: CH - CH,)®

a) Structures and functions

@
C C C
o,/ N\ RN VRN
¢ e ¢ ¢ ¢
e
Y =b—c Yp=0—C0C Yg=a—b
b) Matrix ¢) Bigenvalues and linear combinations
Q@+ y o o
Y Q e ¥ zy o
o oy Q+a Py ] Yy, ) Y3
Y, —0.851 0.365 ‘ —0.857 ’ 0.365
w, | 0500 0707 | 0 ~0.707
7| 235 0606 | 0515 ] 0.606
Table 2. Allyl anion, (H,C = CH 2 CH,)®
a) Structures and functions
o
C C C
o/ N\ VRN 7/ \e
C C C C C ¢
e
yu=a-a b—c Py=ab->bc Yg=a-b ¢c—c¢
[
b) Matrix ¢) Bigenvalues and linear combinations
@ v 2
7 @—2xy ¥ > @ ] Cor
20y Q Py ’ Yo ( Y3
v, I —2.562 ’ 0.261 ' —0.929 ’ 0.261
v, © —1.000 f 0.707 | 0. | —0.707
¥, ] 1.562 i 0.657 | 0.369 | 0.657
1 i
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Table 3. Butadiene radical cation, (H,Czw CH == CH 2 CH,)®

a) Structures and functions

. . ®
C C C C C C
e/ "\ / o /N / NS
C C c C C \C/
P=b c¢—b Yo=b—c d yy=0a c¢—d
& b S '
C C C C
NS . \e o
C C C O/ C/ \C/
——
Yy=a—c d ys=a b—d ye=a—>b d
¢ G ¢
C C
NS e
C C C/ C
y,=a b—c¢ Yyy=a—b ¢
b) Matrix
o y , rx_’
Q+ 2 g o v 2 o 2 0 0
o Y o’ ,
Q+ 5 ) % 5 o 0 0
Q+a y , o’
Q+o 5 Vv 5 o )
* Y o ,
=3 2 v 2 *
Q+ Y
9= 2 4 B
v
Q+o 2 ¥
o
symmetrical Q+ 5 32 + o
Q@+
¢) Eigenvalues and linear combinations
v, l N l Co
Py Py l V3 l Py Y5 Y Yq ‘ Ys
Yy —2.081 |—0.522 0.564 | 0.261 [—0.522 0.522 |—0.261 | —0.564 ] 0.522
v, —2.017 | —0.243 0.352 0.496 |--0.715 |—0.715 0.496 0.352 | —-0.243
Y —0.818 0.713 | —0.539 0.122 |—0.333 | —0.333 0.122 [—0.539 ‘ 0.713
v, —0.725 | 0.408 |—0.204 {—0.296 |—0.408 | 0.408 | 0.206 | 0.204 |—0.408
v, —0.040 0.167 0.442 | —0.475 0.063 0.053 | —0.475 0.442 0.167
v, 1.081 0.248 0.5615 |—0.124 0.248 | —0.248 0.124 | —0.515 | —0.248
Y, 1.725 0.408 | —0.204 0.704 | —0.480 0.408 |—0.704 | 0.204 |—0.408
! 0.238 ‘ 0424 | 0.205 0.205 0.424 l 0.238 0.266

W | 2874 0.266



VB Treatment of Orbital Degeneracy I

Table 4. Butadiene radical anion, (HyC =z CH == CH = CH,)®

a) Structures and functions

243

. . 9
C. c C C c C
o/ "\ _/ e/ "\ N
¢« ¢ ¢
y=a—abc—d Yo =a—ab—cd py=ab—bec—d
o g .o o, 0
C C
y . Ne/ VARN-Y4
N ¢ ¢ ¢ ¢
S
y=ab—bcd yy=abc—cd Ppo=0—bec—cd
I il [I—
¢ o G
C
. ’ N/
C/ N\ o C/ o
y,=ab—cd—d yg=a—bcd—d
b) Matrix
& Q@+ o ¥ o
_— - — ! 0
-3 2 v 2 2 * 0
Q— _;i % y o 20 0 0
Q—o 4 , ,
Q—o 2 v B 2ux o
5o % , &
¢ 3 / * 2
56 Q—« ¥
Y 3 4 2
Y
Q—o 5 Y
symmetrical
Q+ «x
3 "o
o
Uy
c) Eigenvalues and linear combinations
C.
v, Ty ’ | ‘ 7 |
a Yy I Y V3 I Yy Ys Y J Yy ) Vs
Y —4.074 | —0.257 0.276 0.515 |—0.737 |—0.737 | 0.515 \ 0.276 | —0.257
Y, —3.220 |—0.288 | 0.396 | 0.243 |—0.696 | 0.696 | —0.243 |~—O.396 0.288
v, —2.742 | 0487 |—0.450 |—0.398 | —0.202 | 0.202 | 0.398  0.450 | —0.487
Y —2.000 0 0.500 |—0.500 0 0 —0.500 0.500 0
Y, \_1'607 —0.727 0.482 {—0.040 | 0.317 0.317 | —0.040 0.482 | —0.727
Y, |—0.258 |—0.576 | 0.113 ,—0.541 0.239 | —0.239 0.541 | —0.113 0.576
v, } 0.220 |—0.121 |—0.542 ’ 0.395 |—0.291 0.291 1—0.395 0.542 0.121
v, ] 1.680 0.267 ’ 0.330 ’ 0.387 ‘ 0.153 ! 0.153 ] 0.387 0.330 l 0.267




Table 5. Pentadienyl cation, (H,Cx CH: CH=:» CH == CH,)®

a) Structures and functions

®
C C C C C C
o/ N\ /\ o/ \\ 7/ "\ NN
¢ ¢ o CANCED® ¢ ¢ e
SN
pyp=b—cd—e p,=bc—de Yya=a—cd—e
S
& 0 6 o o,
VERNVARN 7/ N\e Z N\e/ "\
C C C C \C/ \C C C \C
N— v/
y=ac—de y;=ab—de Yyg=a—bd—e
L1 S
C 8 C 8 C C. C C
VAR NVARN 7NN SNINe SN ST N\e
G C C C C C C \_C/ C C C C
ya=ab—ce wg=a—bec—e —qb—cd Yw=o—bc—d
' L1
b) Matrix
3x Q@+ 3x y o ,
Q+-2* 5 Y 5 3 o 0 0 0 0
7 , 0 0 0 0
Q ) Y o 3
a @ ¥ o’ ,
Q+ 3 3 +a ) y B o 0 0
o ¥ , o o 0
Qrg v 2 * 2
Q Y , o’
Q** .2 —2~ + o 14 “2— *® -é_
2 L id '
Q+ 2a 3 ¥ 3 o
@ 14
Uty vy
& Y
, 3y 3 7
symmetrical Q+3a
@ 2
3o
¢) Higenvalues and linear combinations
‘ ‘ Crr
¥y zr |
\ v | o ol ow w ow w ow | ow | me
! 1 ’ ‘ |
Py \—2.803; 0.081¥~0.139J 0.244!40.341‘ 10231—0 544 —0. 341‘ 0.244 | —0.139 | 0.081
¥, |—2.604 0.448' —0.5841 —0.445 0.489! 0. 0o —o0. 489 | 0445 0.584 | —0.448
¥, | —2.277| 0.520;—0.696 | —O0. 307} 0.340| 0.060 | —0.006 | 0340( .807 | —0.696 | 0.520
¥, | —0.780| —0.252| 0.526 | —0. 617‘ 0.394‘ 0o | o —os0s! 0.617 —0526 0252
¥, 0.052 | —0.251| 0.608 ' —0.125 ' —0.273 —0.333—0.125| 0.608 —0.251| 0.052
v, 0.058' 0.397 | ~0.096 —0.182 -—0.498: © 0 0498 0182| 0.096 —0.307
¥, | 1010 —0.545 —0.009 —0.040  0.307  0.260 0.124/| 0.397 | —0.049 | —0.009 | —0.545
v, \ 1459, 0.061] 0.299'—0.199) 0.490| 0.370 |—0. 742‘ 0.490 —0.199 | 0.299' 0.061
7, 2.276 | —0.496 —0.199 | —0.235 | —0.156| 0 0 | 0156 0235, 0199 0.496
¥, \ 3.779| 0294, 0100| 0.318] 0.148] 0.069 | 0.601| 0.148| 0318‘ 0.100 | 0.294




Table 6. Pentadienyl anion, (H,Cx CH 2 OH = CH = OH,) @
a) Structures and functions

o
C Cy C C c C
e / /NN
8/ \C/ No C/ \C/ \C G o o
N
y=a—ab—cd—e P,=a—abc—de py=ab—becd—e
c C C C
C C
NN AN, N\,
c c ¢ C .
y=ab—bec—de Yys=a—bc—cd—e pg=abc—cde

(Y L1

o o _
NN NN N AR
C\L/ ~ /’

Yyp=ab—cd—de yy=a—bed—de po=ab~~cde—e Yo=a—bec—de—e

L | I—
b) Matriz
Q+_ g + & v -—:V- 20(’ o’ 0 0 0 0
2 ‘ 2
’
y , o
— S o —_— 0 0 0 0
Q—« 3 Y 2
3 '
L yow W =0 0
2 2 2 2
3a Y
—_—— 2’ o’ 0 0
-3 3 v
@ 4 p /
Q ? —2— v 2 2o
’
4 & ,
-3 - —_— o
Q 3 v 2 2
3o @ 4
2 2 4 2
b1 Y
-5 5
. 2 2
symmetrical Q
@—o 5 te
o
+——~
@ 2
¢) Bigenvalues and linear combinations
Yy as
wlmnlulwlnlnulnlm
| / r
Yy | —4.923 | —0.144 0.1933} 0.364 | —0.421 | —0. 500‘ 0.913 | —0.421 0.364 0.193 | —0.144
Py | —4.008| 0.341 ~-0.466  —0.466 | 0.636| 0 0 —0.636 | 0.466 | 0.466 — 0.341
¥ | —B.209| 0450 | 0.565| 0.361.—0.234] 0.247|—0.590 |-—0.234| 0.361| 0.565 | —0.450
¥y | —2405| 0.316|--0.411| 0.540 | —0.150 | —0.385 | —0.188 | —0.150 | 0.540 | —0.411| 0.316
¥y | —2.000, —0.834| 0.605|—0.542| 0.334¢] o0 0 —0.334] 0.542 | —0.605| 0.334
¥y | —2.000| 0.381|— 0.210 | —0.341|—0.381] 0 0 0.381| 0.341] 0.210|-—0.381
¥y 10809 —0.28¢ —0.311| 0.232 | —0.086| 0.646| —0.054 | —0.036| 0.232 — 0.811 | —0.284
¥y | —0.290|—0.321 | 0.175, —0.046| 0.620 | —0.378| 0.334| 0.620| —0.046| 0.175]—0.821
Py | 1.098|—0.542 | —0.198 | —0.198 | ~0.073 ’ } 0.073| 0.198| 0.198| 0.542
Py | 2636, 0.399| 0117 0.238] 0.142] 0.560| 0.043] 0.142, 0.238, 0.117| 0.399
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